二项式定理与杨辉三角 | 玄数

2012-02-24

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 6ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + a6

… …

(a + b)n = ?

 

杨辉三角

在二项式 (a + b)n 中,每一单项式的次数和都等于n,把每一项的系数列出来,可以得到一个杨辉三角:三角形左边和右边的数字全都是1,而内部的每一个数字都是连接到它的上端的两个数字之和。内部的数字究竟还有其他什么特征?

n次幂对应的项数共有 n + 1 项,而且每一行的数字都是对称的。从外往内看,每一行顺数和倒数的第2个数字都是n,nC1 = nCn–1 = n

二项式定理

顺数和倒数的第3个数字都 nC2 = nCn–2

二项式定理

… …

 

所以杨辉三角又可以表示为以下形式

yanghui triangle

左边上的“1”实际是nC0,左边上的“1”实际是nCn,每一行的第k项的系数都是nCn–k+1。从左向右排列为:

二项式定理

 

用组合解释如下:(a + b)n就是n个 (a + b) 相乘,每个(a + b) 相乘时有两种选择,选a或b,而且每个(a + b)中的a或b都选定后,才能得到展开式的一项。

把n个 (a + b) 中的所有的a相乘,得到an

把n个 (a + b) 中的 (n – 1) 个a与剩下的最后一个 (a + b) 中的b相乘,得到an–1b ;

把n个 (a + b) 中的 (n – 2) 个a与剩下的最后两个(a + b) 中的b相乘,得到an–2b2

… …

把n个 (a + b) 中的 (n – k) 个a与剩下的k个(a + b) 中的b相乘,得到an–kbk

… …

把n个 (a + b) 中的所有的b相乘,得到bn

an–kbk 出现的次数 =  n个(a + b) 中取k个b的组合数nCk

 

把(a + b)n展开得到

binomial theorem

这就是二项式定理(Binomial Theorem)

 

 

二项式定理与杨辉三角