布丰投针试验 | 玄数

2016-06-08

公元 1777 年的一天,法国科学家布丰的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。

试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半。然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我。”

布丰投针试验 buffon needle

客人们不知布丰先生要干什么,只好客随主意,一个个加入了试验的行列。一把小针扔完了,把它捡起来又扔。而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针 2212 次,其中与平行线相交的有 704 次。总数 2212 与相交数 704 的比值为 3.142。”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!”

π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实。由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题。布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为 l,投针的次数为 n,所投的针当中与平行线相交的次数是 m,那么当 n 相当大时有:π≈2ln/dm

上面故事中,针长l恰等于平行线间距离d的一半,所以代入上面公式化简得:π≈n/m

其中的一个证明方法是:找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离 d。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为 n 次,那么相交的交点总数必为 2n

现在设想把圆圈拉直,变成一条长为πd 的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有 4 个交点,3 个交点,2个交点,1 个交点,甚至于都不相交。

由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数可望是一样的。这就是说,当长为πd 的铁丝扔下 n 次时,与平行线相交的交点总数应大致为 2n。

现在再来讨论铁丝长为 l 的情形。当投掷次数 n 增大的时候,这种铁丝跟平行线相交的交点总数 m 应当与长度 l 成正比,因而有:m=kl,式中 K 是比例系数。为了求出 K 来,只需注意到,对于 l=πd 的特殊情形,有 m=2n。于是求得k=2n/πd。代入前式就有m≈2ln/πd,从而π≈2ln/dm

这便是著名的布丰公式。

但这个证明有个问题,就是证明的基础:当铁丝的长度一定时,无论什么形状,与线相交,为什么点的总数期望是一样的呢?为什么它们是机会均等的?

布丰投针试验