π的约率、密率、连分数 | 玄数

2017-03-14

3.14是圆周率π的近似值,3月14日便被约定为一年一度的圆周率日。

圆周率是圆周长与直径的比值。π作为圆周率的符号,是由著名数学家欧拉于公元1737年首先使用的。阿基米德曾用“逼近”的思想——不断地扩大正多边形的边数,求出圆周率π满足:π的连分数 。用22/7来代替π,对于人类的日常生活是足够了!所以历史上称22/7为π的“约率”。

在分母小于100的分数中,再也找不到第二个比它更接近π的了!比 更接近π的下一个分数是333/106,而分母小于三万的分数中,最接近π的是355/133,通称“密率”。由我国南北朝时期的数学家祖冲之(429~500)算出。
祖冲之 ZuChongZhi

但这些分数都是有理数,公元1761年,德国数学家兰伯特(Lambert,1728—1777)证明了π是个无理数。

 

任何一个实数都可以表为连分数的形式,它可以通过辗转相除的方法求得。
连分数

一个有限的连分数代表着一个有理数;反过来,一个有理数也一定能通过辗转相除,化为有限的连分数。例如:
连分数

 

从而,把π展成连分数,它一定也是无限的。那么π的连分数又是怎么算的呢?由约率可轻易得到
π的连分数

下一个
π的连分数
x是多少?

 

π的小数点后截取7位3.1415926作为π的近视值,得

π的连分数

 

再下一个
π的连分数

 

接着
π的连分数

但要注意到0.004这个数是有误差的,一点点的误差,倒数会差别很大。所以,要在小数点后截取更多的位数来求3.14159265358979323846
π的连分数

 

π的连分数

π的约率、密率、连分数