费马 Fermat | 玄数

2013-07-09
  • 1601 —1665 年,法国
  • 业余数学家之王

 费马 Fermat

费马1601年8月17日出生于法国南部,家境富裕,官职为律师,并被推举为议员。

费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。

费马对数学的贡献包括:与笛卡尔共同创立了解析几何;创造了作曲线切线的方法,被微积分发明人之一牛顿奉为微积分的思想先驱;通过提出有价值的猜想,指明了关于整数的理论——数论的发展方向。他还研究了掷骰子赌博的输赢规律,从而成为古典概率论的奠基人之一。

笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。

1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。后来他在信中他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。

费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。

16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼兹微积分的缔造者,并且在其之前,费马也做了奠基性的工作。

曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。

17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。

费马在数论领域中的成果是巨大的,其中主要有:

  1. 全部素数可分为4n+1和4n+3两种形式。
  2. 形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
  3. 没有一个形如4n+3的素数,能表示为两个平方数之和。
  4. 形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
  5. 边长为有理数的直角三角形的面积不可能是一个平方数。
  6. 4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。

17世纪,费马还和法国的帕斯卡研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。他们在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。

费马 Fermat

上一篇

下一篇