历年数学中考大题 —— 应用题 – 函数解析式 | 玄数

2013-06-25

2009南昌 —— 四、解答题:21(8分)

某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段 、 分别表示父、子俩送票、取票过程中,离体育馆的路程 (米)与所用时间 (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点 的坐标和 所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?

 

2008长春 —— 三、解答题:26(10分)

如图,足球场上守门员在 处开出一高球,球从离地面1米的 处飞出( 在 轴上),运动员乙在距 点6米的 处发现球在自己头的正上方达到最高点 ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点 距守门员多少米?(取 4√3 = 7 )
(3)运动员乙要抢到第二个落点 ,他应再向前跑多少米?(取 2√6 = 5 )

 

2007沈阳 —— 七、解答题:25(12分)

化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.
(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?
(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:
实际售价x(元/千克) … 150 160 168 180 …
月销售量y(千克) … 500 480 464 440 …
      ① 请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;
     ② 请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;
     ③ 若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?

 

2006江西 —— 六、解答题:24(9分)

小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a > 8),就站到A窗口队伍的后面. 过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.
(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式表示)?
(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其他因素).

 

2005陕西 —— 三、解答题:21(8分)

某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:
印数x(册) 5000 8000 10000 15000 ……
成本y(元) 28500 36000 41000 53500 ……
(1) 经过对上表中数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出x的取值范围);
(2) 如果出版社投入成本48000元,那么能印该读物多少册?

 

2004云南 —— 三、解答题:24(9分)

某住宅小区,为美化环境,提高居民区生活质量,要建一个八边形居民广场(平面图如图所示)。其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米。
(1)设矫形的边长 (米), (米),用含 的代数式表示 为 ;
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元;
①设该工程的总造价为 (元),求 关于 的函数关系式;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能请说明理由;
③若该工程在银行贷款的基础上,又增加奖金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由。

 

2003 上海 —— 四、解答题:25

卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1∶11000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE∥AB。如图,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图8:
2003年上海数学中考 —— 应用题函数解析式
  (1)求出图8上以这一部分抛物线为图像的函数解析式,写出函数定义域;
  (2)如果DE与AB的距离OM=0.45cm,求卢浦大桥拱内实际桥长(备用数据: ≈1.4,计算结果精确到1米)

历年数学中考大题 —— 应用题 – 函数解析式