化圆为方 | 玄数

2017-08-20

《几何三大问题(历史来源)》中阐述了“化圆为方”的来历,也在《几何三大问题(解决)》中解释了不可能的原因:π是一无理数,√π无法用尺规作图来完成。

那假如我们跳出尺规作图这个圈子呢?

《尺规作图和作图公法》中的第16条:作两条已知线段a、b的比例中项(即 a: x = x : b),可知所求的线段满足x2 = ab。若能够使线段a、b的乘积刚好是π,不就可以求出x来了吗?

古代几何学家梁拉多达维奇用来一种令人拍案叫绝的方法:先作一个直圆柱,用已知圆作它的底面,已知圆半径的一半做它的高,然后把这个圆柱测放在平面上滚一周,得到一个长方形。
化圆为方 squaring the circle

 

这个长方形面积就等于已知圆的面积,最后作一正方形,使之面积等于把长方形,便可解决
化圆为方 squaring the circle

化圆为方——非尺规作图


2012-04-13

几何三大问题是:

1.  化圆为方——求作一正方形使其面积等于一已知圆

2.  三等分任意角

3.  倍立方——求作一立方体使其体积是一已知立方体的二倍

 

 

这三个古老的几何作图问题,其历史可以追溯到相当久远的年代,看起来好像很简单,但真正做出来却很困难。不准有多少数学家和爱好者为其费了多少心思,然而最后证明它们都不可能用尺规作图法经有限步骤完成。

 

三大难题的来源与故事

1. 化圆为方

阿纳克萨戈勒斯是古希腊著名学者,在天文学中,他曾因解释日、月食的成因而闻名遐迩,并且认识到月球自身并不发光。正是他出色的研究成果给他带来了不幸,在他大约50岁的时候,横祸从天而降,蒙受了冤狱之苦。灾难的起因是他认为太阳是一块炽热的石头。由于当时的宗教早已一口咬定太阳是神灵,而这位学者却无视宗教的权威,说太阳是一块石头,因而被投入监狱。

(更多…)