点乘 | 玄数

2017-11-15

1. 向量的点乘Dot Product(数量积,內积)(Inner Product)

(1)平面向量点乘原理

                             a · b =(x1i + y1 j)·(x2i + y2 j

.                                     = x1 x2 i2 +(x1y2 + x2 y1i j + y1 y2 j2

∵                               i =(1,0),j =(0,1)

∴                               i2 =(1,0)·(1,0)= 1,

                                   j2 =(0,1)·(0,1)= 1

                                   ij =(1,0)·(0,1)=0

∴                                a · b = x1x2 + y1y2

 

在n维向量中             a · b = ∑ai·bi

两个向量的点乘 = 他们对应分量乘积的和

 

(2)几何解释
向量点乘 dot product
                                            a · b =(x1i + y1 j)·(x2i + y2 j

.                                                    = (|a|cosαi + |a|sinαj) · (|b|cosβi + |b|sinβj)

.                                                    = |a|·|b|(cosαcosβ + sinαsinβ)

.                                                    = |a|·|b| cos(α-β)

 

(更多…)